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Abstract

It is estimated that in the world there are between 6 and
8 million people infected with Chagas disease, mainly in
endemic areas of 21 Latin American countries, and in re-
cent years it is slowly becoming a health problem in more
urban areas and countries. In that sense, developing di-
agnosis methods is primordial. That is why this work used
a deep neural network to classify 292 subjects (volunteers
and patients) composed of 83 health volunteers (Control
group); 102 asymptomatic chagasic patients (CH1 group)
and 107 seropositive chagasic patients with incipient heart
disease (CH2 group). Approximate Entropy ApEn was cal-
culated from the tachograms of the circadian profiles of 24
hours every 5 minutes (288 frames) of each subject, and
part of this data were used to train the network. The clas-
sification work done by the deep neural network had 98%
of accuracy and 98% of precision, validated with the ROC
curve, whose AUC values were approximately the unit for
each group. Taking into account the good performance,
we can consider this deep neural network and approxi-
mate entropy as useful tools to have a good early diagnosis
about Chagas disease and its cardiac compromise.

1. Introduction

Chagas disease, also called American trypanosomiasis,
is caused by the protozoan parasite Trypanosoma cruzi.
According to the Pan American Health Organization, there
are currently between 6 and 8 million people in the Ameri-
cas with T. cruzi infection, with approximately 30,000 new
cases per year due to vector transmission, and 8,000 new
cases per year due to congenital transmission mainly in
endemic areas of 21 Latin American countries. About 65
million people live in the region at risk of contracting the
infection and the disease is estimated to cause about 12,000
deaths each year [1].

Chagas disease is considered by World Health Organiza-

tion as a tropical neglected disease, and in recent decades,
it began to be detected in other non-endemic regions of
America [2]. The disease presents in an acute form and,
if not diagnosed and treated in a timely manner, it trans-
forms into a chronic disease; in other words, it has two
phases: acute (often asymptomatic) and chronic. The most
important consequence of Chagas disease is chronic Cha-
gas cardiomyopathy, which occurs in 20-40% of infected
persons [3–5], and it can be potentially lethal. Although
there are some detection ways, which involve various an-
alyzes and antigen tests [6], these are expensive, limited
and invasive. In this context, a new early diagnostic tool
becomes essential.

It is known that the analysis of heart rate variability has
prognostic importance, and specifically, the use of Approx-
imate Entropy has proven to be a very useful statistic in the
treatment of clinical data, especially time series [7–9]. A
previous study even used the HRV analysis with this en-
tropy for Chagas disease [10], finding significant differ-
ences in different periods of the day between the groups of
patients analyzed.

Also, deep neural networks are widely used for disease
detection, and Chagas disease has not been the exception
[11–14] although they mostly involve image analysis. That
is why the present work proposes a deep neural network
that uses an analysis of heart rate variability based on the
Approximate entropy of a database of patients with Cha-
gas disease in order to create a highly efficient and non-
invasive tool for early diagnosis of this disease.

2. Method

2.1. Database

In this work, the ECG database of the Institute of
Tropical Medicine of the Central University of Venezuela
was used, made up of 292 subjects (volunteers and pa-
tients), who underwent various tests with their respec-
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tive informed consent: clinical evaluation, test positive
Machado-Gerreiro serology, chest X-rays, echocardio-
gram, electrocardiogram and Holter recording (24 hours).
All patients and volunteers are classified into three groups:
the Control group made up of 83 healthy people (vol-
unteers), the CH1 group made up of 102 patients in-
fected only with a positive Machado-Gerreiro serological
test (clinical evaluation test, chest X-ray, echocardiogram,
electrocardiogram and Holter were normal), and the CH2
group made up of 107 seropositive patients with incipient
heart disease, first-degree atrioventricular block involve-
ment, sinus bradycardia, or His right bundle branch block,
were not receiving treatment or medication. The ECG sig-
nals in this database were recorded at a frequency of 500
Hz with 12-bit resolution.

2.2. Data preprocessing

The obtaining of the QRS complexes from the ECG
data was made with the Pan-Tompkins algorithm [15], then
generating the 288 tachograms of 5-minute RR for each
subject of the database. Additionally, a filter used in [10]
was implemented to remove noise.

Taking into account that we are working with time-
series data, Approximate Entropy (ApEn) is precisely a
technique that measures their irregularity and complexity.
That is why this stadistic tool was applied to each 5-minute
RR subsegment of each subject according to the definition
given by Steve Pincus [16], in which if the time-series data
consists on N elements:

ApEn(m, r,N) = − 1

N −m

N−m∑
i=1

log

(
Ai

Bi

)
(1)

where m is the embedding dimension, r is a threshold and
Ai and Bi are the measures of proximity between embed-
ding vectors in m and m + 1 dimensions respectively. So
ApEn compares embedding vector elements with others of
the time series to measure the similarity between them.

After having tried values of m from 1 to 4, and r from
10% to 50% of the standard deviation, the parameters m =
2 and r = 40% of standard deviation were selected for
the good discrimination they achieved between the three
groups and each group with another.

Finally, some missing Approximate Entropy data (pro-
duced by noise filtering and the database itself) were inter-
polated using the fillgaps algorithm that uses autoregres-
sive models [17] to predict the missing data. Therefore,
each subject had 288 ApEn values.

2.3. Proposed NN architecture

The great capacity of artificial neural networks to carry
out classification or prediction tasks is widely known. First

of all, for the implementation of a neural network, all data
was randomly divided as follows: 70% of 292 subjects
made up the training set and the other 30% made up the test
set. In addition, a validation set was considered to evaluate
the ability of the model while adjusting the most optimal
hyperparameters in the training phase. This was 20% of
the training set during the network training.

A Densely Connected Neural Network was imple-
mented in Pyhton, using Keras and Scikit-learn library,
with a sequential model and dense layers. 288 values of
ApEn were the input layer nodes, which were previously
standardized in order to obtain an optimal performance.
Three hidden layers were included with 15, 10 and 8 nodes
respectively, and the output layer had 3 nodes (correspond-
ing to each group).

To train the model, the activation function was sigmoid
in all layers, except the output layer, which was softmax
due to multiclass output. The Adam optimizer was used
with a learning rate of 0.002 and the loss function was cat-
egorical cross entropy. Finally, a batch size of 10 was used,
and 200 was the epoch limit. No cross validation was per-
formed.

3. Results

With the proposed architecture it was possible to obtain
some graphs that describe the evolution of the training.
One of those is the loss function represented in Figure 1,
it shows the error made by the network at the end of each
epoch. It is observed that the validation curve are follow-
ing the same behavior of the training curve. Both curves
are getting closer to cero, without characteristics of over-
fitting thanks to the early stopping function implemented
to stop the model training when the validation loss does
not reach smaller values in 5 consecutive epochs.

Figure 1. Evolution of the Loss function through the
epochs
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The ratio of correctly classified subjects to the total
number of them in each epoch is represented in Figure
2, which shows the evolution of the accuracy through the
epochs. It can be seen that both curves (training and val-
idation) follow the same tendency to increase their value
(closer and closer to 1) as the number of epochs increases,
and in the same way as the previous graph, it does not show
signs of overfitting, so its evolution is satisfactory.

Figure 2. Evolution of the Accuracy through the epochs

In order to visualize the performance of the model, Fig-
ure 3 shows the confusion matrix. This matrix is an object
that shows what types of successes and errors our trained
model has had, through relevant information obtained with
the test set, like the total number of true positive, true nega-
tive, false positive and false negative classifications. From
this table we can obtain the best known performance evalu-
ation metrics of a neural network, such as precision, recall
and the F1-score for each class, as well as the accuracy,
macro average and weighted average of the total classifi-
cation. Therefore, with these evaluation metrics, the classi-
fication results of our model were as follows: for the Con-
trol group we got a precision of 96%, a recall of 96% and
a F1-score of 96%. For the CH1 group the precision was
97%, the recall was 100% and the F1-score was 98%. And
for the CH2 group the results were 100% for precision,
97% for recall and 98% for F1-score. On the other hand,
the overall precision of the model was calculated using the
number of subjects in each group as a weight for each class
and it was about 98%.

In order to clarify and observe the success rate, the
receiver operating characteristic curve (ROC curve) was
plotted with the true positives rate (sensitivity) on the y-
axis and the false positives rate (1 - specificity) on the x-
axis. Since a ROC curve is normally used in binary clas-
sification, in order to evaluate the output of our multiclass
classifier, an extended version of the ROC curve had to be
applied with the micro and macro averaging algorithm in

Figure 3. Confusion matrix

the scikit-learn library. Thus, Figure 4 shows the following
ROC curves: one curve for each group (one-vs-all) and two
general curves for the whole classification. Likewise, the
area under the curve (AUC) values for each curve are also
shown. It is known that while the AUC value is higher, the
performance of the model is better at distinguishing be-
tween classes. As all the AUC values are approximately
1, we can say that the classification results were really re-
markable.

Figure 4. ROC curve

4. Discussion and conclusions

Considering the differences in the circadian profiles ob-
tained with the use of ApEn between the three groups of
the database used of patients with Chagas disease, it was
possible to implement a densely connected neural network
to classify them.

Although the number of subjects was limited (292) and
no data augmentation algorithm was used, the results ob-
tained in this work for the model evaluation were remark-
able.
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From the training graphs, which did not present over-
training characteristics, a satisfactory evolution in network
learning could be evidenced. Thus, an excellent perfor-
mance of the model was obtained, corroborated by the
best-known evaluation metrics. All precision values were
greater than 95% in all groups, with 98% of accuracy and
98% of overall precision in classification. ROC curves also
validated this excellent performance, since in all cases the
AUC values are 1.

Due to the need for early identification of patients with
Chagas disease who do not yet have symptoms (CH1
group) but who could potentially be part of the CH2 group,
we can consider the proposed network, as an effective de-
tection tool for early non-invasive diagnosis of this disease.
Other works have considered the application of neural net-
works based on clinical and sociodemographic data for the
prediction of Chagas disease [13], but in particular, the fo-
cus of the present work, which is based only on the anal-
ysis of heart rate variability with ApEn, achieves higher
diagnostic accuracy.

Finally, despite the excellent results obtained, since it is
a neural network, it could be possible to increase its ro-
bustness by considering a larger number of patients by be-
ing exposed to a more precise representative sample and,
of course, updated.
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ARRITMIAS y muerte súbita en la enfermedad de Chagas.
Publ. del Instituto de Medic. Tropical.

[5] Di Lorenzo Oliveira, C., Nunes, M. C., Colosimo, E., de
Lima, E., Cardoso, C., Ferreira, A., de Oliveira, L., Valente,
C., Bierrenbach, L., Ana, D., Peixoto, S., Lima, M. Sabino,
E. & Ribeiro, A. L. P. (2020). RISK Score for Predicting
2-Year Mortality in Patients With Chagas Cardiomyopathy
From Endemic Areas: SaMi-Trop Cohort Study. Journal of
the American Heart Association, 9(6), e014176.

[6] Forsyth, C., Manne-Goehler, J., Bern, C., Whitman, J.,
Hochberg, N., Edwards, M., Marcus, R., Beatty, N., Castro-

Sesquen, Y., Coyle, C., Stigler, P., Hamer, D., Maguire,
J., Gilman, R. & Meymandi, S. (2022). RECOMMENDA-
TIONS for Screening and Diagnosis of Chagas Disease in
the United States, The Journal of Infectious Diseases, 225(9),
1601-1610. https://doi.org/10.1093/infdis/jiab513.

[7] Fonseca, S., Milho, J., Passos, P., Araújo, D. & Davids,
K. (2012). APPROXIMATE entropy normalized measures
for analyzing social neurobiological systems. J Mot Behav,
44(3),179-183. doi: 10.1080/00222895.2012.668233.

[8] Horie T. (2013). APPROXIMATE entropy of electrocardio-
gram signals in atrial fibrillation. Rinsho Byori., 61(10),893-
899.

[9] Solı́s, E., Gálvez, G. & Muñoz, A. (2020). ENTROPY Anal-
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